AltIMU-10 v4 Gyro, Accelerometer, Compass, and Altimeter

Product Code: 1714
by Pololu
£23.95 inc VAT
£19.96 ex VAT
24 in stock.

More available in 5-7 days.
Available for backorder (more info)

The AltIMU-10 v4 is an inertial measurement unit (IMU) and altimeter that features the same L3GD20H gyro and LSM303D accelerometer and magnetometer as the MinIMU-9 v3, and adds an LPS25H digital barometer. An I²C interface accesses ten independent pressure, rotation, acceleration, and magnetic measurements that can be used to calculate the sensor's altitude and absolute orientation. The board operates from 2.5 to 5.5 V and has a 0." pin spacing.

The AltIMU-10 v4 features a newer pressure sensor than its predecessor, the AltIMU-10 v3, enabling pressure and altitude measurements with higher accuracy and lower noise, but the two boards are otherwise identical. Compared to the original AltIMU-10, the v4 version offers a number of improvements arising from the use of newer MEMS sensors, including a wider maximum magnetic sensing range and better gyroscopic accuracy and stability. This version also adds a pin for changing the sensor slave addresses, allowing two AltIMUs to be on the same I²C bus.

The LPS25H, L3GD20H, and LSM303D have many configurable options, including selectable resolutions for the barometer and dynamically selectable sensitivities for the gyro, accelerometer, and magnetometer. Each sensor also has a choice of output data rates. The three ICs can be accessed through a shared I²C/TWI interface, allowing the sensors to be addressed individually via a single clock line and a single data line. Additionally, the SA0 pin is accessible, allowing users to change the slave addresses and have two AltIMUs connected on the same I²C bus.

The nine independent rotation, acceleration, and magnetic readings provide all the data needed to make an attitude and heading reference system (AHRS), and readings from the absolute pressure sensor can be easily converted to altitudes, giving you a total of ten independent measurements (10DOF). With an appropriate algorithm, a microcontroller or computer can use the data to calculate the orientation and height of the AltIMU board. The gyro can be used to very accurately track rotation on a short timescale, while the accelerometer and compass can help compensate for gyro drift over time by providing an absolute frame of reference.

The carrier board includes a low-dropout linear voltage regulator that provides the 3.3 V required by the LPS25H, L3GD20H, and LSM303D, allowing the module to be powered from a single 2.5 V to 5.5 V supply. The regulator output is available on the VDD pin and can supply almost 150 mA to external devices. The breakout board also includes a circuit that shifts the I²C clock and data lines to the same logic voltage level as the supplied VIN, making it simple to interface the board with 5V systems. The board's 0.1" pin spacing makes it easy to use with standard solderless breadboards.

Note: The AltIMU-10 v4 is a compact (1.0"- 0.5") board that combines ST's LPS25H digital barometer, L3GD20H 3-axis gyroscope, and LSM303D 3-axis accelerometer and 3-axis magnetometer to form an inertial measurement unit (IMU) and altimeter; we therefore recommend careful reading of the LPS25H datasheet, L3GD20H datasheet, and LSM303D datasheet before using this product. These sensors are great ICs, but their small packages make them difficult for the typical student or hobbyist to use.The board ships fully populated with its SMD components, including the L3GD20H, LSM303D, and LPS25H, as shown in the product picture.

Included Components

A 1x6 strip of 0.1" header pins and a 1x5 strip of 0.1" right-angle header pins are included. You can solder the header strip of your choice to the board for use with custom cables or solderless breadboards. The board features two mounting holes that work with #2 or M2 screws (not included).

  • Dimensions: 1.0"- 0.5"-0.1" (25 mm x 13 mm x 3 mm)
  • Weight without header pins: 0.8 g (0.03 oz)
  • Operating voltage: 2.5 V to 5.5 V
  • Supply current: 6 mA
  • Output format (I²C):
    • Gyro: One 16-bit reading per axis
    • Accelerometer: One 16-bit reading per axis
    • Magnetometer: One 16-bit reading per axis
    • Barometer: 24-bit pressure reading (4096 LSb/mbar)
  • Sensitivity range:
    • Gyro: ±245, ±500, or ±2000°/s
    • Accelerometer: ±2, ±4, ±6, ±8, or ±16 g
    • Magnetometer: ±2, ±4, ±8, or ±12 gauss
    • Barometer: 260 mbar to 1260 mbar (26 kPa to 126 kPa)